GEOMETRY
 OF THE MOLECULES METHYL CHLORIDE AND METHYL BROMIDE

BY
B. BAK

KØBENHAVN
I KOMMISSION HOS EJNAR MUNKSGAARD 1947

Printed in Denmark. Bianco Lunos Bogtrykkeri

1. Introduction.

TThe determination of the exact geometrical shape of the methyl halides is of more general interest. It has long been realized that numerous chemical problems which hitherto could only be treated empirically or half-empirically, as e. g. the Walden inversion, should be studied by means of the methods of quantum mechanics. A first step which should enable us to perform such calculations is, of course, the study of the geometrical configuration of the molecule.

In organic-chemical problems we often meet with the question to what extent the substitution of one or more hydrogen atoms by so-called "electro-negative" atoms or groups, such as the halogens, will alter the original stereochemistry of the compound. In this respect the simplest cases are the methyl halides, and conditions are most favourable in the case of $\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{Br}$. Here, comparatively exact spectroscopical and interferometrical data are available which, in connection with thermodynamical data, offer the best possible information on the geometrical properties of the molecules.

Penney ${ }^{1}$ has given a quantum mechanical treatment of the bond energies and the valency angles of the methyl halides. The treatment, of course, is only approximative. To quote Penney, the result is that "if some or all of the hydrogen atoms in methane are replaced by other mono-valent groups, the resulting deviations from the tetrahedral angle are remarkably small, and can hardly exceed a few degrees". Beside this theoretical treatment, a contribution based upon spectroscopical results was later given by Sutherland ${ }^{2}$. However, since the paper of Sutherland was

[^0]published, many new important spectroscopical and thermodynamical data have been found which make a new treatment interesting.
2. Relations Between the Intramolecular Distances and Angles in the Methyl Halides and the Two Principal Moments of Inertia. Numerical Calculations.

In Fig. 1, X is the halogen atom, C the carbon atom, and H a hydrogen atom. T is the center of gravity, d is the distance $\mathrm{C}-\mathrm{H}$, and a the distance $\mathrm{C}-\mathrm{X}$. The supplementary angle to

Fig. 1.
$\mathrm{H}-\mathrm{C}-\mathrm{X}$ is denoted by $\varphi . \mathrm{I}_{\mathrm{C}}$ is the moment of inertia around the z -axis and I_{A} the corresponding quantity around the x^{\prime}-axis. Then, the following relations hold:

$$
\begin{gather*}
\mathrm{I}_{\mathrm{C}}=3 \mathrm{~m}_{\mathrm{H}} \mathrm{~d}^{2} \sin ^{2} \varphi . \tag{1}\\
\mathrm{I}_{\mathrm{A}}-\frac{1}{2} \mathrm{I}_{\mathrm{C}}=\mathrm{a}^{2} \frac{\mathrm{~m}_{\mathrm{X}} \mathrm{~m}_{\mathrm{C}}}{\mathrm{~m}_{\mathrm{CH}_{3} \mathrm{X}}}+3(\mathrm{a}+\mathrm{d} \cos \varphi)^{2} \frac{\mathrm{~m}_{\mathrm{H}} \mathrm{~m}_{\mathrm{X}}}{\mathrm{~m}_{\mathrm{CH}_{3} \mathrm{X}}}+3 \mathrm{~d}^{2} \cos ^{2} \varphi \frac{\mathrm{~m}_{\mathrm{C}} \mathrm{~m}_{\mathrm{H}}}{\mathrm{~m}_{\mathrm{CH}_{3} \mathrm{X}}} . \tag{2}
\end{gather*}
$$

Here, m_{H} is the mass of the hydrogen atom, etc.
The quantities to be determined are a, d and φ. a, the distance between the carbon and the halogen atom, has been determined by electron scattering experiments.

	a	
$\mathrm{CH}_{3} \mathrm{Cl}$	1.77 ± 0.02	Sutton and Brockway ${ }^{1}$.
$\mathrm{CH}_{3} \mathrm{Br}$	1.91 ± 0.06	Lewy and Brockway ${ }^{2}$.

It is to be expected that these values are rather reliable since in the electronic scattering experiments the molecule practically acts as if it was diatomic owing to the small scattering effect of the hydrogen atoms. Thus, the additional knowledge of I_{A} and I_{C} will enable us to calculate d and φ by means of (1) and (2).

Our present knowledge of I_{A} and I_{C} for $\mathrm{CH}_{3} \mathrm{Cl}$ is mainly based upon a work of Nielsen ${ }^{3}$ and papers by Bennett and Mayer ${ }^{4}$ and Johnston and Dennison ${ }^{5}$. Studying the fine structure of the infrared band at $1355 \mathrm{~cm}^{-1}$ Nielsen was able to show that $I_{A}=57.910^{-40} \mathrm{gcm}^{2}$. Utilizing the measurements of Bennett and Mayer, Johnston and Dennison could show that $\mathrm{I}_{\mathrm{C}}=5.4410^{-40} \mathrm{gcm}^{2}$. Nielsen's value of I_{A} is probably exact within 1-2 per cent*, while I_{C} is uncertain to 5 per cent.

The present values of I_{A} and I_{C} for $\mathrm{CH}_{3} \mathrm{Br}$ were communicated and discussed by the author in a previous paper ${ }^{6} . \mathrm{I}_{\mathrm{C}}=5.37$ $10^{-40} \mathrm{gcm}^{2} \pm 5$ per cent and $\mathrm{I}_{\mathrm{A}}=77.510^{-40} \mathrm{gcm}^{2} \pm 4$ per cent, values which are equally well consistent with spectroscopical ${ }^{7}$, heat capacity ${ }^{8}$, and equilibrium ${ }^{9}$ data.
${ }^{1}$ Journ. Am. Chem. Soc. 57, 473 (1935).
${ }^{2}$ Ibid. 59, 1662 (1937).
${ }^{3}$ Nielsen, Phys. Rev. 56, 847 (1939).
${ }^{4}$ Bennett and Mayer, Phys. Rev. 32, 888 (1928).
${ }^{5}$ Johnston and Dennison, Phys. Rev. 48, 868 (1935).
${ }^{6}$ B. Bak, D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXIV, 9 (1948).
${ }^{7}$ Bennett and Mayer, loc. cit.
${ }^{8}$ Egan and Kemp, Journ. Am. Chem. Soc. 60, 2097 (1938).
${ }^{9}$ В. ВАк, loc. cit.

* Compare, however, the note added in proof.

	$\mathrm{I}_{\mathrm{A}} \cdot 10^{40}$	$\mathrm{I}_{\mathrm{C}} \cdot 10^{40}$
$\mathrm{CH}_{3} \mathrm{Cl} \ldots \ldots$	57.9	5.44
$\mathrm{CH}_{3} \mathrm{Br} \ldots \ldots$	77.5	5.37

By means of these values the following figures for d and φ are calculated:

	$\mathrm{I}_{\mathrm{A}} 10^{40}$	$\mathrm{a} \AA$	$\mathrm{I}_{\mathrm{C}} 10^{40}$	φ	$\mathrm{~d} \AA$
$\mathrm{CH}_{3} \mathrm{Cl} \ldots \ldots$	57.9	1.77	5.44	87°	1.05
$\mathrm{CH}_{3} \mathrm{Br} \ldots \ldots$	77.5	1.91	5.37	90°	1.04
Tetrahedral angle:			70°		
$\mathrm{C}-\mathrm{H}$ distance in $\mathrm{CH}_{4}:$				1.09	

The figures given here are, of course, not exact, as the experimental data on which they are based have a given uncertainty. Considering equation (2) we see that the least possible value of φ is obtained by using the highest possible value of I_{A} and, at the same time, minimum values of a and I_{C}. When carrying through the calculations as above we find:

	$\mathrm{I}_{\mathrm{A}} 10^{40}$	$\mathrm{a} \AA$	$\mathrm{I}_{\mathrm{C}} 10^{40}$	φ	$\mathrm{~d} \AA$
$\mathrm{CH}_{3} \mathrm{Cl} \ldots \ldots$	59.0	1.75	5.17	78°	1.04
$\mathrm{CH}_{3} \mathrm{Br} \ldots \ldots$	80.5	1.85	5.11	69°	1.08
Tetrahedral angle:			70°		
$\mathrm{C}-\mathrm{H}$ distance in CH_{4}				1.09	

In the case of $\mathrm{CH}_{3} \mathrm{Cl}$ it seems firmly established that φ deviates considerably from the tetrahedral angle. For $\mathrm{CH}_{3} \mathrm{Br}$ it is necessary to assume a maximum deviation from the experimental average in order to get a model with $\varphi=70^{\circ}$. It seems thus unevitable to draw the conclusion that the methyl group of $\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{Br}$ is far more "flat" than that of CH_{4}, in contrast to the result obtained by Penney.

Note added in proof: In a letter to Phys. Rev. 72, 344 (1947) Gordy, Simmons and Smith have reported $\mathrm{I}_{\mathrm{A}}\left(\mathrm{CH}_{3} \mathrm{Cl}^{35}\right)=63.1 \cdot 10^{-40}$ gcm^{2} and $\mathrm{I}_{\mathrm{A}}\left(\mathrm{CH}_{3} \mathrm{Br}\right)=87.5 \cdot 10^{-40} \mathrm{gcm}^{2}$. A serious discrepancy thus exists between this microwave value and $\mathrm{I}_{\mathrm{A}}\left(\mathrm{CH}_{3} \mathrm{Cl}\right)=$ $57.9 \cdot 10^{-40} \mathrm{gcm}^{2}$ given by Nielsen (loc. cit.), which is hardly explanable by experimental uncertainty. Should the values found
by means of the new microwave technique be confirmed by future experiments, they will mean a confirmation of Penney's viewpoint:

	$\mathrm{I}_{\mathrm{A}} 10^{40}$	$\mathrm{a} \AA$	$\mathrm{I}_{\mathrm{C}} 10^{40}$	φ	$\mathrm{~d} \AA$
$\mathrm{CH}_{3} \mathrm{Cl} \ldots \ldots$	63.1	1.77	5.44	69°	1.10
$\mathrm{CH}_{3} \mathrm{Br} \ldots \ldots$	87.5	1.91	5.37	67°	1.12
Tetrahedral angle:			70°		
C-H distance in CH_{4}				1.09	

Universitetets kemiske Laboratorium.
Copenhagen.

[^0]: ${ }^{1}$ Penney, Trans. Far. Soc. 31, 734 (1935).
 ${ }^{2}$ Sutherland, ibid. 34, 325 (1938).

